

TARDEC

---TECHNICAL REPORT---

No._____________

By:______________________________________

Distribution:____________________________________

U.S. Army Research, Development and Engineering Command
U.S. Army Tank-automotive and Armaments Research

Development and Engineering Center
Detroit Arsenal
6501 East 11 Mile Road
Warren, Michigan 48397-5000

14349

Wesley Bylsma

Approved for public release; distribution is unlimited.

CREATION OF VIRTUAL REALITY MODELING
LANGUAGE (VRML) GEOMETRY DATA FROM

MOVIE.BYU DATA

TAR DEC

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
30 NOV 2004 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
CREATION OF VIRTURAL REALITY MODELING LANGUAGE
(VRML) GEOMETRY DATA FROM MOVIE.BYU DATA

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
WESLEY BYLSMA

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US ARMY TARDEC - NATIONAL AUTOMOTIVE CENTER,ATTN:
AMSRD-TAR-N/MS157,6501 EAST 11 MILE
RD,WARREN,MI,48397-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER
14349

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
A process for converting Movie.BYU graphic ".geometry" files using the AWK programming language is
presented, with the intent of future use in scene assembly into Virtual Reality Modeling Language (VRML)
file.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1.0 INTRODUCTION..1

2.0 MOVIE .BYU FORMAT...2

3.0 GEOMETRY FORMAT ...2

4.0 VRML FORMAT...3

5.0 GAWK CONVERSION...4

5.1 INPUT ...4

5.2 PARAMETERS..5

5.3 OUTPUT ...5

5.4 CODE SECTIONS ...5

6.0 SUMMARY/CONCLUSION ..6

CONTACT..6

REFERENCES...6

DEFINITIONS, ACRONYMS, ABBREVIATIONS.......................................6

APPENDIX A – GEO2GEOMETRY.AWK SCRIPT7

FIGURE 1 – ESSENTIAL VRML VISUALIZATION COMPONENTS1

FIGURE 2 – MOVIE.BYU GRAPHICS FILE FORMAT2

TABLE 1 - PARAMETER DEFINITIONS ...5

TABLE 2 - INTERNAL PARAMETER DEFINITIONS5

1

Technical Report 14349
November 2004

CREATION OF VIRTUAL REALITY MODELING LANGUAGE

(VRML) GEOMETRY DATA FROM MOVIE.BYU DATA

Wesley Bylsma
U.S. Army Research, Development and Engineering Command (RDECOM)

U.S. Army Tank-automotive and Armaments Research, Development and Engineering Center (TARDEC)
National Automotive Center (NAC)

ATTN: AMSRD-TAR-N/MS157
6501 E 11 Mile Road

Warren, Michigan 48397-5000

1.0 INTRODUCTION
Visualization of complex information is one of the best ways to communicate its meaning. The focus of this effort is on the
creation of the geometry portion a Virtual Reality Modeling Language (VRML) file that is used to visualize ground vehicle
simulations. As Figure 1 depicts, there are five essential elements that should be included within the composite VRML file
for meaningful visualization effects. Only the geometry element is discussed here.

VRML

Geometry

Appearance
Displacement

Parameters

View

VRML

Geometry

Appearance
Displacement

Parameters

View

Figure 1 – Essential VRML Visualization Components

The geometry element is a generic file with the ".geometry" extension that contains three dimensional points and
connection information that make up polygonal parts, or geometric structures. This report addresses the conversion
process between the Movie.BYU format to the generic ".geometry" format to be used with VRML. The conversion
process is accomplished with the AWK Programming Language, named after its authors (Alfred V. Aho, Brian W.
Kernighan, and Peter J. Weinberger at Bell Labs), which is designed to provide easy data manipulation and extraction of
text files. In this case the Free Software Foundation's GNU version, GAWK, is used. More conversion processes may be
developed in the future for inclusion of other geometric file formats. The focus of this discussion is restricted to the
conversion of the Movie.BYU format. Section 2.0 begins with a discussion of the Movie.BYU format. Section 3.0
discusses the geometry (".geometry") format, section 4.0 discusses the VRML format that will be generated from the
".geometry" format, and section 5.0 outlines the GAWK conversion processes with subsections on specific topics.

2

2.0 MOVIE.BYU FORMAT
The Movie.BYU format [1] was developed at Brigham Young University and may also be referred to as a ".geo" file. It is a
very simple ASCII based format that allows for multiple non-connecting parts. Figure 2 defines the essential parts of the

PART 1

1

2 3

4

PART 2

5

6

7
8

2 8 3 10
1 2 3 3
x1 y1 z1 x2 y2 z2
x3 y3 z3 x4 y4 z4
x5 y5 z5 x6 y6 z6
x7 y7 z7 x8 y8 z8
1 2 -3 2 3 -4 5 6 7 -8

Integers (10I8)

Floating Point (6E12.5)

Movie BYU (GEO) Four Sections
1. Array dimensions (parts, vertices, polygons,

connectivity entries)

2. Part Boundaries (start, end polygon)

3. x-y-z Vertex Coordinates

4. Connectivity Array (vertex indices)

Figure 2 – Movie.BYU Graphics File Format

Movie.BYU file. It contains four sections. Section one defines the number of parts, vertices, polygons, and connectivity.
Section two defines starting and ending polygons for each part. Section three contains the three dimensional (x,y,z) data
for each vertex. Section four defines the vertices making up each polygon. Sections one, two, and four use integer
values and each line has the FORTRAN format of "10I8". In section four, the end of a polygon vertex is signaled by a
minus integer. Section three contains floating point numbers and each line has the FORTRAN format of "6E12.5". The
gray box in Figure 2 shows an example file layout.

3.0 GEOMETRY FORMAT
The geometry file is also a simple ASCII file like the Movie.BYU, only with a different format. Its format is laid out into
sections. Two sections are possible: Points and Part.
Multiple Part sections are possible.

The Point section begins with "#POINTS:" and ends with "#END". Following the colon in the "#POINTS:" header the
number of points (or lines) should be given. Each line between the header and trailer contains the x, y, and z component
of a three dimensional point (vertex) in space. Below is an example ".geometry" file:

#POINTS: 31596
4.634800 1.441500 1.896100
4.634800 1.840200 1.896100
...

3

2.323900 1.884100 5.651400
4.532100 1.909800 4.565300
#END
#PART: 1
0 2 1 -1
3 5 4 -1
...
27066 27068 27067 -1
27069 27071 27070 -1
#END
#PART: 2
27072 27074 27073 -1
27075 27077 27076 -1
...
31590 31592 31591 -1
31593 31595 31594 -1
#END
...

The Part section begins with "#PART:" and ends with "#END". Following the colon in the "#PARTS:" header the number
of the part should be given. Each line between the header and trailer contains the index number into the point array of
each point (zero index based) to be connected together to form a polygonal face. This sequence is ended with "-1". For a
triangular surface each line will only contain four numbers (three vertices and the value "-1"). The length of each line is
not specified since it is just copied into the VRML file (see 4.0 VRML FORMAT). See the example ".geometry" file above.

4.0 VRML FORMAT
The geometric data used in the VRML file [2] is included using the Coordinate and IndexedFaceSet nodes as defined in
ISO 14772-1:1997. The creation of these nodes is done during final scene assembly with another program. A description
is included here to help understand where the geometry data is included into the final VRML scene file.

The Coordinate Node template is

DEF Cx Coordinate { point [x1 x2 x3 ... xn] }.

This node defines all the points in the geometry file first. By including a name to the node definition, it can be referenced
later in other nodes and save space by not requiring a redefinition of all the coordinates.

The IndexedFaceSet Node template is

DEF Cx_Px IndexedFaceSet { coord USE Cx coordIndex [d1 d2 d3 ...-1] }

This node defines all the indexes into a given coordinate set that composes each polygonal face of each geometric
structure. By referencing a previously defined Coordinate node, all vertex values can be stored in one node. Each part
will have an IndexedFaceSet node and each Coordinate node may contain vertices for multiple parts. An example section
of a VRML (.wrl) file is included below:

DEF C9 Coordinate { point [#./testd/vicplsROTb.geometry
-6.166104 0.570916 -0.116510
-6.166104 0.456971 -0.116510
...
-6.300978 0.050792 -0.569112
-6.300978 -0.050808 -0.569112
-6.046978 -0.050808 -0.569112
] } #./testd/vicplsROTb.geometry
DEF C9_P1 IndexedFaceSet { #./testd/vicplsROTb.geometry
 coord USE C9
 coordIndex [
0 1 2 3 -1
7 6 5 4 -1
...
2915 2914 2887 2886 -1
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 -1
2933 2932 2931 2930 -1
2934 2935 2936 2937 -1
] }
DEF C9_P2 IndexedFaceSet { #./testd/vicplsROTb.geometry
 coord USE C9
 coordIndex [
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 -1

4

2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 -1
] }
DEF C9_P3 IndexedFaceSet { #./testd/vicplsROTb.geometry
 coord USE C9
 coordIndex [
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 -1
3017 3016 3015 3014 3013 3012 3011 3010 3009 3008 3007 3006 3005 3004 3003 3002 3001 3000 2999 2998 -1
2978 2998 2999 2979 -1
...
2996 3016 3017 2997 -1
2997 3017 2998 2978 -1
] }
DEF C9_P4 IndexedFaceSet { #./testd/vicplsROTb.geometry
 coord USE C9
 coordIndex [
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 -1
3047 3046 3045 3044 3043 3042 3041 3040 3039 3038 3037 3036 3035 3034 3033 -1
3018 3033 3034 3019 -1
...
3052 3053 3049 3048 -1
3049 3053 3054 3050 -1
] }

Note that the Coordinate node contains vertices for four parts.

5.0 GAWK CONVERSION
The creation of the geometry portion of the VRML file is done with GAWK. This is a very useful scripting language that is
available for UNIX and Windows operating systems from The Free Software Foundation
("www.gnu.org/software/gawk/gawk.html") or directly from Bell Labs ("cm.bell-labs.com/cm/cs/awkbook/"). Figure 3
outlines the AWK process.

.awk
(geo2geometry.awk)

parameters
(-v SF=“0.0254”

…)

input file
(geo.names)

Figure 3 – GAWK process

Parameters are passed to the AWK script before it begins processing the input file. Output can be sent to the standard
output or a specified file. An example of the calling structure with the script name "geo2geometry.awk" is given below

gawk -v SF="0.0254" -v SRC="./geo/" -v SUF=".geo" -v DES="./testd/" -f ../src/geo2geometry.awk geo.names

5.1 INPUT
The input file is named "geo.names". Its contents are just a list of files to convert. Its format can contain up to two
columns separated by spaces. The first column is the Movie.BYU (or .geo) file name and the optional second column is
"1" if normals are to be reversed on the geometry. An example is included below:

vicplsROTb
axle1ROTb
axle2ROTb 1
axle34ROTb
axle5ROTb
wheel1ROTb 1
retdrawbar
trailerbitspreadwtank2
RMS1.50-ROT

Notice the "1" after "axle2ROTb" and "wheel1ROTb" to indicate that normals are to be reversed.

5

5.2 PARAMETERS
Table 1 defines and describes the parameters passed to the GAWK script for processing the Movie.BYU files. The VRML
file assumes all values are in SI units--meters for distance. Note that all parameters are passed as strings within double
quotation marks.

Table 1 - Parameter Definitions
VARIABLE DESCRIPTION EXAMPLE

SF Scale Factor. Conversion to meters. "0.0254"
SRC Source Directory. "./geo/"
SUF Movie.BYU File Suffix Extension. ".geo"
DES Destination Directory. "./testd/"

It is assumed that all file names listed in the "geo.names" input file have the same extension (in the example ".geo").

5.3 OUTPUT
The converted file will have the same name as in the "geo.names" file, but with a ".geometry" extension. This format is
discussed in section 3.0.

While it is not considered directly part of the conversion process, output of a formatted version of the "geo.names" file is
required for scene assembly as discussed in Section 1.0 and Figure 1. An example of this simple AWK program is given
below

gawk '{printf "%3d %s\n", NR,$1;}' geo.names > G.names

The "G.names" file is used for visual inspection of the geometry index number to ensure proper alignment with other
VRML properties and is used in final scene assembly. An example of the "G.names" file format is given below.

 1 vicplsROTb
 2 axle1ROTb
 3 axle2ROTb
 5 axle34ROTb
 6 axle5ROTb
 7 wheel1ROTb
 8 retdrawbar
 9 trailerbitspreadwtank2
 10 RMS1.50-ROT

5.4 CODE SECTIONS
The GAWK script "geo2geometry.awk" is included in Appendix A. It begins with initializing variables. Then each name is
checked to see if it is a duplicate. If it is, processing skips to the next file name. For each file name a flag is set to
whether normals should be reversed on not. Processing for each file name is continued as follows:

1. Read header of Movie.BYU file
2. Read in parts data with GeoReadParts(geo_nprt,fi)
3. Read in points data with GeoReadPoints(geo_npts,fi)
4. Read in lines data that defines each polygon with GeoReadLines(geo_nlin,fi,geo_ply,geo_eprts)
5. Write out point data with GeoWritePoints(fo,geo_npts,geo_ptsx,geo_ptsy,geo_ptsz)
6. Write out part data with GeoWriteParts(geo_nprt,fo,RNOR,geo_ply,geo_lin,geo_eprts,geo_bprts)

Table 2 defines some important internal parameter definitions.

Table 2 - Internal Parameter Definitions
VARIABLE DESCRIPTION EXAMPLE

RNOR Reverse Normals (1=yes, other =no). 1
FS Field Separator. " "

FIELDWIDTHS Field Widths. (for fixed column width reading) "8 8 8 8 8 8"

Reversing normals (RNOR=1) is accomplished by saving the sequence of polynomial vertices into an array and then
writing them out in reverse order. (Without specific normals specified, the right-hand-rule is used to define them.
Reversing the vertex order accomplishes this.)

6

6.0 SUMMARY/CONCLUSION
A simple script based conversion process between Movie.BYU and a generic ".geometry" format was described for use in
scene assembly of VRML files. It should be noted that the scene assembly portion mentioned in section 1.0 could be
done with X3D [3]. Currently, however, many advanced utilities, such as Cortona Movie Maker [4] will only work with
VRML and therefore is the focus at this time.

CONTACT
The author is an engineer with the U.S. Army Research, Development and Engineering Command (RDECOM), located at
the U.S. Army Tank-automotive and Armaments Research, Development and Engineering Center (TARDEC). Interested
parties can contact the author at the U.S. Army Tank-automotive and Armaments Research, Development and
Engineering Center (TARDEC), ATTN: AMSRD-TAR-N/MS157, 6501 E 11 Mile Rd., Warren, Michigan 48397-5000,
email: “bylsmaw@tacom.army.mil”.

REFERENCES
[1] Movie.BYU format, "lc.cray.com/doc/movie/".

[2] The Virtual Reality Modeling Language (VRML), ISO/IEC 14772-1:1997 and 14772-2:2002, "www.web3d.org". (The

Virtual Reality Modeling Language consists of two parts. Part 1 (ISO/IEC 14772-1) defines the base functionality and
text encoding for VRML. Part 2 (ISO/IEC FDIS 14772-2) defines the base functionality and all bindings for the VRML
External Authoring Interface).

[3] X3D, ISO/IEC Draft 19776-1:200x, 19776-2:200x, 19777:200x, "www.web3d.org". (X3D encodings — ISO/IEC FDIS

(Final Draft International Standard) 19776-1:200x (XML encoding) (.html) (.zip 220KB) 2004-09-26 Specifies the
encoding of X3D files using the Extensible Markup Language (XML). X3D encodings — ISO/IEC FDIS (Final Draft
International Standard) 19776-2:200x (Classic VRML encoding) (.html) (.zip 90KB) 2004-07-21 Specifies the encoding
of the functionality and constructs defined in X3D using Classic VRML encoding. X3D language bindings — ISO/IEC
FCD (Final Committee Draft) 19777:200x (.html) (.zip 143KB) 2003-05-15 Specifies the binding of the services in the
X3D architecture to the ECMAScript programming language for use in X3D internal representation (Script nodes) and
for external application access Specifies the binding of the services in the X3D architecture to the Java programming
language for use in X3D internal representation (Script nodes) and for external application access).

[4] Parallelgraphics, Inc. "www.parallelgraphics.com".

DEFINITIONS, ACRONYMS, ABBREVIATIONS
RDECOM – U.S. Army Research, Development and Engineering Center
TACOM - U.S. Army Tank-automotive and Armaments Command
TARDEC - TACOM Research, Development and Engineering Center
NAC - National Automotive Center

7

APPENDIX A – GEO2GEOMETRY.AWK SCRIPT

geo2geometry
-v SF=0.254 (scale factor to meters)
-v SRC="./geo/" (source directory)
-v SUF=".geo" (source file extension suffix)
-v DES="./vrml/" (destination directory)

RNOR (reverse normals, 0 = no, 1 = yes)

BEGIN {
#---set fixed widths for Movie .BYU/.geo inputs
 fint="8 8 8 8 8 8 8 8 8 8";
 ffloat="12 12 12 12 12 12";
 FS = " ";
}
{
 fi = SRC$1SUF;

 if (fi in names)
 {
 print "Duplicate",fi;
 }
 else
 {
 names[fi]=1;
 RNOR = $2; # set reverse normals flag
 fo = DES$1".geometry";
 print fi,"->",fo;

 FIELDWIDTHS=fint;
 getline < fi;
 geo_nprt = $1;
 geo_npts = $2;
 geo_nply = $3;
 geo_nlin = $4;

#---READ IN PARTS DATA
 GeoReadParts(geo_nprt,fi);

#---READ IN PTS
 GeoReadPoints(geo_npts,fi);

#---READ IN LINES AND CREATE POLY'S INDEX TO THEM
 GeoReadLines(geo_nlin,fi,geo_ply,geo_eprts);

#---Write ".geometry"
 print "Writing ",fo;
 printf "# %s\n",fi > fo;

 GeoWritePoints(fo,geo_npts,geo_ptsx,geo_ptsy,geo_ptsz);
 GeoWriteParts(geo_nprt,fo,RNOR,geo_ply,geo_lin,geo_eprts,geo_bprts);

#---reset for read of *.names file
 FS = " ";
 close(fi);
 }
}
END {
 print "Done.";
}

function GeoReadParts(geo_nprt,fi, i,j)
{
 print "Reading Parts ",fi;
 FIELDWIDTHS=fint;
 i = 0;
 while (i < geo_nprt)
 {
 err = getline < fi;
 if (err <= 0) {print "---error reading",fi;exit;};
 for (j = 1; j <= NF; j=j+2)
 {
 geo_bprts[i]=$j;

8

 geo_eprts[i]=$(j+1);
 i = i + 1;
 }
 }
}

function GeoReadPoints(geo_npts,fi, i,j)
{
 print "Reading Points ",fi;
 FIELDWIDTHS = ffloat;

 i = 0;
 while (i < geo_npts)
 {
 err = getline < fi;
 if (err <= 0) {print "---error reading",fi;exit;};
 for (j = 1; j <= NF; j=j+3)
 {
 geo_ptsx[i] = $j;
 geo_ptsy[i] = $(j+1);
 geo_ptsz[i] = $(j+2);
 i = i + 1;
 }
 }
}

function GeoReadLines(geo_nlin,fi,geo_ply,geo_eprts, cntl,cntp,savi,i,j)
{
 print "Reading Lines",fi;
 FIELDWIDTHS = fint;

 cntl = cntp = 0;
 savi = -1;

 i = 0;
 while (i < geo_nlin)
 {
 err=getline < fi;
 if (err <= 0) {print "---error reading",fi;exit;};
 for (j = 1; j <= NF; j++)
 {
 geo_lin[i]=$j;
 if (savi < 0)
 {
 geo_ply[cntp] = i; # /* index zero based here for start of poly in lin[]*/
 savi = i;
 }
 if (geo_lin[i] < 0)
 {
 cntl = cntl + 1;
 }
 if (cntl == geo_eprts[cntp])
 {
 cntp = cntp + 1; #/* start next poly index to lin[] */
 savi = -1;
 }
 i = i + 1;
 }
 }
}

function GeoWritePoints(fo,geo_npts,geo_ptsx,geo_ptsy,geo_ptsz, i)
{
 print "Writing Points",fo;
 printf "#POINTS: %d\n",geo_npts >> fo;
 for (i=0; i < geo_npts; i++)
 {
 printf "%f %f %f\n", SF*geo_ptsx[i],SF*geo_ptsy[i],SF*geo_ptsz[i] >> fo;
 }
 printf "#END\n" > fo;
}

function GeoWriteParts(geo_nprt,fo,RNOR,geo_ply,geo_lin,geo_eprts,geo_bprts, i,cntl,k,cnt,val,savri,savr,z)
{
 print "Writing Parts",fo;
 for (i=0; i < geo_nprt; i++)
 {

9

 printf "#PART: %d\n",i+1 >> fo;
 if (RNOR!=1)
 {
 cntl = 0;
 k = geo_ply[i];
 cnt = 0;
 do {
 val = geo_lin[k];
 if (val < 0)
 {
 val = -val;
 cntl = cntl + 1;
 printf "%d -1\n",val-1 >> fo; #/* make zero based */
 }
 else
 {
 printf "%d ",val-1 >> fo; #/* make zero based */
 };
 cnt++;
 k = k + 1;
 } while (cntl < (geo_eprts[i] - geo_bprts[i] + 1));
 }
 else
 {
 #/* reverse normals */
 # printf("---Reversing Normals for BODY:%s\n",par_bodname[ind]);
 savri=0;
 cntl = 0;
 k = geo_ply[i];
 cnt = 0;
 do {
 val = geo_lin[k];
 if (val < 0)
 {
 val = -val;
 cntl = cntl + 1;
 savr[savri]=val-1; /* make zero based */
 printf "%d ",savr[0] >> fo;
 for (z=savri;z>0;z--)
 {
 printf "%d ",savr[z] >> fo; /* make zero based */
 }
 printf "-1\n" >> fo;
 savri=0;
 }
 else

 {
 savr[savri]=val-1; /* make zero based */
 savri++;
 }
 cnt++;
 k = k + 1;
 } while (cntl < (geo_eprts[i] - geo_bprts[i] + 1));
 }
 printf "#END\n" > fo;
 }
}

